Journal of Organometallic Chemistry, 179 (1979) C33–C36 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

Cationic Allyldinitrosyl Complexes of Iron

by Paul K. Baker and Neil G. Connelly*

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

(Received July 30th, 1979)

<u>Summary</u> The nitrosonium ion, $[NO]^+$, and $[Fe(CO)L(NO)(n^3-allyl)]$ $[L = PPh_3 \text{ or } P(OMe)_3, allyl = C_3H_5, 1-MeC_3H_4, \text{ or } 2-MeC_3H_4]$ react to give the fluxional cation $[FeL(NO)_2(n^3-allyl)]^+$. which undergoes allyl displacement with nucleophiles.

<u>The</u> $Fe(NO)_2$ group is currently under investigation as a catalyst for the cyclodimerisation of dienes¹, and it has been proposed² that allyldinitrosyl intermediates are involved in cyclooligomerisation reactions catalysed by $[Fe(CO)_2(NO)_2]$. Until now only one allyldinitrosyl complex of iron, $[Cl_2Sn{Fe(NO)_2(n^3-C_3H_5)}_2]$ has been fully characterised and it is noteworthy that this species is also catalytically active.³ We now report the synthesis of the cationic complexes $[FeL(NO)_2(n^3-allyl)]^+$, and preliminary studies of their fluxionality and reactivity.

Equimolar quantities of $[NO] [PF_6]$ and $[Fe(CO)L(NO)(n^3-allyl)]$ $[L = PPh_3 \text{ or } P(OMe)_3, allyl = C_3H_5, 1-MeC_3H_4, \text{ or } 2-MeC_3H_4]^4$ react in CH_2Cl_2 to give the orange, crystalline salts $[FeL(NO)_2(n^3-allyl)] [PF_6]$. The phosphite complexes are stable in the solid state when stored under nitrogen and have been fully characterised by element analysis (C, H and N) and by i.r. and ¹H n.m.r. spectroscopy (Table). The phosphine

-	H n.m.r.	Data for [fel(A	40) ₂ (n ³ -a11y1)][PF ₆]				
all	5	⊽(NO) cm ^{-1^a}	На	운	£ ₽	Methyl Protons	
c _{3H5}		1 853, 1 801	6.48 {1H, d, J _{Ha} Hc 14 Hz} 5.58 {1H, d, J _{HaHc} 13 Hz}	4.74 (2H, m)	4.52 (1H, m)	6.06 {9H. s. J _{PH} 14 Hz ^c . P(OMe) ₃ }	
- L	ec3H4 ^c	1 843, 1 794	6.78 {lH, brd.d, J _{HaHc} 12 Hz}	4.96 (1H, m) 4.50 (1H, m) ^e	4.50 (1H, m) ^e	6.08 {9H, s, J _{PH} 13 Hz ^c , P(OMe) ₃ } 7.62 {3H, d, J _{HMe} H _b 5 Hz} ^f	
2-Me	ac 3H4	1 851, 1 798	6.63 (1H, s) 5.60 (1H, s)	4.86 (2H, brd.s)	·	6.06 {9H, s, J _{PH} 12 Hz ^c , P(OMe) ₃ } B.16 (3H, s)	
C ₃ H ₅ 1-Me 2-Me	5 503H4 503H4	1 842, 1 792 1 833, 1 785 1 839, 1 789	r	·	t	r	
2. v1/i so	b 31 Mer p	P-decoupled, ir resent. ^e Si	ı CD ₂ Cl ₂ at O ^O C, num ignals coincident.	bering as in Figure fSignal is tripl	. ^C J _{PH} from et in ³¹ P-couple	³¹ P-coupled spectrum. ^d O	nly

C34

analogues are much less stable and no n.m.r. spectra have been recorded.

The variable temperature (-30 to +25°C) ³¹P-decoupled ¹H n.m.r. spectra of $[Fe{P(OMe)_3}(NO)_2(n^3-allyl)][PF_6]$ show that the cations are fluxional. Below 0°C the spectra are as expected for a static structure in which the n^3 -allyl ligand is bonded to an unsymmetric $Fe{P(OMe)_3}(NO)_2$ group; the <u>anti</u>-protons H_a (Figure) are inequivalent as are the <u>syn</u>-protons H_b. As the temperature is raised allyl rotation results in the broadening and coalescence of, for example, the two singlets ($\tau = 5.60$ and 6.63) due to the <u>anti</u>-protons of the 2-MeC₃H₄ ligand. Details of the fluxional behaviour of $[FeL(NO)_2(n^3-allyl)]^4$ will be presented at a later date.

The chemistry of $[FeL(NO)_2(n^3-allyl)][PF_6]$ is dominated by allyl displacement. For example, hydride ion, sodium amalgam, and L each afford $[FeL_2(NO)_2]$, and chloride ion yields paramagnetic $[FeClL(NO)_2]^5$ in an unusual electron-transfer reaction.

Figure

Acknowledgement

P.K.B. thanks the S.R.C. for a Research Studentship.

- I. Tkatchenko, J.Organometal.Chem., 124 (1977) C39; D. Ballivet,
 C. Billard and I. Tkatchenko, J.Organometal.Chem., 124 (1977) C9;
 Inorg_Chim.Acta, 25 (1977) L58; D. Ballivet-Tkatchenko, M. Riveccie and N. El Murr, Inorg.Chim.Acta, 30 (1978) L289.
- 2. J.P. Candlin and W.H. Janes, J.Chem.Soc.(C), (1968) 1856.
- 3. D.L. Maxfield, Inorg.Nucl.Chem.Letts., 6 (1970) 707; U.S. Patent 3377397 [from Chem.Abs. 69 (1968) 96057x]; Fr. Patent 1535936 [from Chem.Abs. 71 (1969) 70185d].
- 4. G. Cardaci and A. Foffani, J.C.S.Dalton, (1974) 1808.
- 5. J. Schmidt, Z.Naturf., 27b (1972) 600.